Joint with the Washington Chromatography Discussion Group
Speaker: Ina Nemet, Lerner Research Institute, Cleveland Clinic
Topic: Dissecting gut microbial metabolic pathways in cardiometabolic diseases by mass spectrometry-based metabolic approaches
Date: Monday, April 17, 2023
Time: 6:15 pm Dinner, 7:15 pm Presentation
Location: Shimadzu Scientific Instrument, Inc. Training Center 7100 Riverwood Drive, Columbia, MD 21046 (Directions)
This will be an in-person meeting. Attendees are required to show a vaccine card (either at the door or in advance using the web form) . If you have submitted your vaccine card before, your status is already recorded.
Dinner: Please RSVP to Andy Qi (andy.yue.qi@gmail.com) by Friday, April 14 if you will be attending the dinner.
Abstract: Elucidating pathways that contribute to cardio-metabolic diseases beyond traditional risk factors, is important for developing new strategies effective in preventing and reducing disease progression. Multiple diseases including cardiovascular disease, obesity, type 2 diabetes, metabolic syndrome, and hypertension are associated with altered gut microbial structure and function. Rational design of personalized therapeutic strategies that target gut microbiota driven pathways require a comprehensive understanding of gut microbial metabolism and the relationship between systemic levels of metabolites and disease risks.
Recently we have clinically and mechanistically linked phenylacetylglutamine (PAGln), a gut microbially derived metabolite from aromatic amino acid phenylalanine, with cardiovascular disease risks. PAGln was elevated in diabetics and predicted incident risks for cardiovascular events independent of blood glucose levels. Mechanistic studies reveal PAGln acts via the adrenergic receptor. We have continued mapping out microbial metabolic pathways that are associated with adverse phenotypes in the host. The results of these studies will provide a meaningful starting point for the development of new therapeutic treatments for cardiometabolic diseases aimed at shifting nutrient fermentation away from metabolites associated with disease toward ones that are beneficial to the host.
Thank you to our 2022-2023 sponsors!