Tuesday, February 21st, 2017


The 11th Summer School for “Mass Spectrometry in Biotechnology and Medicine” (MSBM)

Date: July 2-8, 2017

The 11th Edition of the Summer School for “Mass Spectrometry in Biotechnology and Medicine” (MSBM), will be held at the Centre for Advanced Academic Studies (CAAS), Dubrovnik, Croatia, 2-8 July 2017. Once again MSBM features instruction by the leading international scientists in mass spectrometry. However, this year MSBM is working together with the Nederlandse Vereniging voor Massaspectrometrie (NVMS) to host the third International Mass Spectrometry School (IMSS-2017) on behalf of the International Mass Spectrometry Foundation (IMSF).

Read more of this article

Chemical Residue Workshop: call for abstracts

Date: June 23-26, 2017

Read more of this article

January 2017 Meeting

Speaker: Alexandre Shvartsburg, Wichita State University

Topic: High-Definition FAIMS for Proteomics, Metabolomics, and Structural Characterization Using Isotopologic Shifts

Date: Monday, January 23, 2017

Time: 6:15 pm Dinner, 7:15 pm: Presentation

Location: Shimadzu Scientific Instrument, Inc. Training Center 7100 Riverwood Drive, Columbia, MD 21046 (Directions)

Dinner: Please RSVP to Katherine Fiedler (Katherine.L.Fiedler@fda.hhs.gov) before January 23 if you will be attending the dinner or are a presenting as a vendor.

Abstract: With all the power of modern MS, most biological and environmental samples require substantial prior separations. The traditional chromatography and electrophoresis are now increasingly complemented by ion mobility spectrometry (IMS) in gases. The nonlinear method of differential or field asymmetric waveform IMS (FAIMS) based on the difference between mobilities at high and low electric fields is much more orthogonal to MS than linear IMS based on absolute mobility, which enables exceptionally specific isomer separations.

We will review the prerequisites for high-resolution FAIMS/MS and its exemplary applications. A major topic in proteomics is the localization of post-translational modifications in mixtures of isomeric proteoforms (variants), where MS/MS is limited by the lack of unique fragments. Mixtures of variants up to ~6 kDa with various PTMs are effectively disentangled by FAIMS using synthetic standards and downstream ETD. All D-amino acid containing peptides (DAACP) are likewise resolved from L-analogs. A similar challenge in metabolomics is elucidating the isomeric diversity of lipids that comprises multiple isomer types including transacylation, double bond position, and cis/trans geometry. High-definition FAIMS developed in our lab generally resolves over ~80% of lipid isomers across types, and more in conjunction with OzID for double bond localization. Finally, FAIMS can resolve isotopic isomers (isotopomers) and isotopologues with peak shifts dependent on the geometry. That is conceptually parallel to NMR, enabling a fundamentally new approach to molecular structure characterization based on gas-phase isotopic shifts.


Read more of this article

Read More Posts in Meetings