February Meeting

Speaker: Zachary Goecker, NIST

Topic: Developing Reproducible Methods in Site-Specific Glycosylation Analysis

Date: Monday, February 27, 2023

Time: 6:15 pm Dinner, 7:15 pm Presentation

Location: Shimadzu Scientific Instrument, Inc. Training Center 7100 Riverwood Drive, Columbia, MD 21046 (Directions)
This will be an in-person meeting. Attendees are required to show a vaccine card (either at the door or in advance using the web form) . If you have submitted your vaccine card before, your status is already recorded.

Dinner: Please RSVP to Andy Qi (andy.yue.qi@gmail.com) by Friday, February 24 if you will be attending the dinner.

Abstract: Many proteins are glycosylated at multiple sites, and each site can contain complex
distributions of attached glycans. Until recently, reliable determinations of these distributions have not been possible. Instead, glycosylation analysis of glycoproteins has been primarily accomplished by releasing and identifying glycans, thereby losing all protein site-specific information. This glycomics approach works well for understanding the diversity of glycosylation in a digest, but does not answer questions relevant to site-specific structures (glycan microheterogeneity) and therefore is not as useful in determining direct functional implications. Recent developments in high resolution mass spectrometry have opened the door for the identification of intact glycopeptides. This study assesses methods in site-specific analysis of intact glycopeptides to demonstrate
reproducibility and measure variation in glycosylation quantitatively between different experimental factors. Here, we report the use of stepped HCD fragmentation, contingent ion scan, and many downstream data filters for the production of highly robust and reproducible glycosylation distribution spectra. In this presentation, we will report site-specific glycosylation profiles on glycoproteins from Sars-Cov-2, influenza, blood serum, and breastmilk. Results demonstrate that glycosylation profiles are highly reproducible among replicates and different digestion methods. However, glycosylation patterns do change based on factors such as source, proteins sequence, and glycosylation site.

Thank you to our 2022-2023 sponsors!