September 2021 Meeting and Vendor Night

Speaker: Matthew S. Glover, AstraZeneca

Topic: Development of ion mobility-mass spectrometry methods for improved identification of microbiome-derived metabolites

Date: Monday, September 20, 2021

Time: 6:00 pm Dinner (outdoors) and Vendor Night, 7:15 pm Presentation

Location: Shimadzu Scientific Instrument, Inc. Training Center 7100 Riverwood Drive, Columbia, MD 21046 (Directions)
This will be an in-person meeting. Attendees are required to show a vaccine card (either at the door or in advance using the web form) and to wear a mask.

Dinner: Please RSVP to Dapeng Chen (cdpumd@gmail.com) by Friday, September 17th if you will be attending the dinner.

Abstract: Increasing evidence suggests the human microbiome influences numerous biological processes and perturbation of the microbiome is associated with a variety of diseases. The microbiome influences host health through generation and modification of metabolites such as short-chain fatty acids, bile acids, and tryptophan catabolites. To unravel the role of the microbiome in health and disease, there is a need for high-throughput analytical techniques capable of identifying and quantifying microbiome-derived metabolites in complex biological samples such as plasma and feces. Implementing ion mobility (IM) techniques into traditional LC-MS/MS workflows has emerged as a promising strategy for improving metabolomic workflows due to the orthogonality of IM separations and utility of collision cross section (CCS) measurements for improving identifications of biomolecules in complex mixtures. Here, I will describe the development and optimization of LC-IM-MS methods and accompanying CCS databases for improved characterization of microbiome-derived metabolites in support of microbiome research.

June 2021 Virtual Meeting

Speaker: Bindesh Shrestha, Waters

Topic: Biomedical Applications of MALDI and DESI Imaging using High-Resolution Ion Mobility Mass Spectrometry

Date: Monday, June 21th, 2021

Time: 1:00 PM EDT Presentation

Location: Webinar – see emails on June 10 and 17 for invite link. Join the mailing list

Abstract: In the last decade, both matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) imaging mass spectrometry (MS) have been developed to spatially map small molecules, such as metabolites, lipids and drugs, on tissue. DESI often detects a complementary set of molecules to MALDI due to preferential ionization of those species in electrospray. In this presentation, biomedical applications using both imaging modalities, MALDI and DESI, will be shown. Multimodal imaging using both techniques widens the molecular coverage of many small molecules, such as drugs – with some analyte preferentially ionizing more robustly with one ionization technique versus another. Analysis of ions detected by DESI and MALDI on consecutive sections using similar solvent composition eluded to the complementary coverage of the two mechanistically different ionization sources. In addition to showing the benefits of multimodal imaging MS strategy, the advantages of integrating ion mobility separations during the imaging MS process will also be discussed. Ion mobility separation can isolate ions based on their collision cross-section. For example, imaging a specific lipid molecule on tissue is often challenging because of the large structural diversity of similar lipids present in the sample. Multipass ultrahigh-resolution ion mobility separation can improve the specificity of lipid imaging by DESI, allowing us to image isobaric ions separately. All imaging MS experiments were performed on quadrupole time of flight mass spectrometers, such as SYNAPT XS and Cyclic IMS, with traveling wave ion mobility separation and using High Definition Imaging (HDI) software.

May 2021 Virtual Meeting

Speaker: Martin Jarrold, Indiana University

Topic: Charge Detection Mass Spectrometry: Recent Developments and Applications

Date: Monday, May 17th, 2021

Time: 1:00 PM EDT Presentation

Location: Webinar – see emails on May 6 and 13 for invite link. Join the mailing list

Abstract: Charge detection mass spectrometry (CDMS) provides a way to measure accurate masses for heterogeneous samples into the gigadalton regime. It is a single particle technique where the mass of each ion is determined from simultaneous measurements of its mass to charge ratio (m/z) and charge. CDMS opens the door to the analysis of high mass, heterogeneous samples such as vaccines and gene therapy products. Recent developments in instrumentation that have improved the resolution and speed of CDMS measurements will be described along with several recent examples of applications to the analysis of bio-pharmaceuticals, and virus assembly and disassembly.

April 2021 Virtual Meeting

Speaker: Stefani Thomas, University of Minnesota

Topic: Beyond the BRCA genes: A proteome-centric view of high-grade serous ovarian cancer

Date: Monday, April 19th, 2021

Time: 2:00 PM Presentation

Location: Webinar – see emails on April 9 and 15 for invite link. Join the mailing list

Abstract: The mutational status of a solid tumor can predict the therapeutic efficacy of a specific drug in a molecularly defined subset of patients. Poly (ADP-ribose) polymerase inhibitors (PARPi) have emerged as a novel class of drugs to treat advanced ovarian cancer with mutations in BRCA1/2 genes. Unfortunately, there is considerable inter-patient heterogeneity in BRCA1/2–based determinations of PARPi treatment sensitivity. Determining proteome-level mechanisms of PARPi sensitivity could enhance our ability to select the ovarian cancer patient population that would benefit the most from PARPi therapy, consequently improving survival and overall treatment response. Our laboratory is applying mass spectrometry-based proteomics to identify protein signatures of PARPi sensitivity. This presentation will provide an overview of the experimental models and analytical approaches that we are utilizing toward a long-term goal of identifying prognostic protein biomarkers of PARPi sensitivity in patients with high-grade serous ovarian cancer.